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Abstract: Mineral detection using remote sensing techniques 
is important since it saves the time and effort of carrying 
out manual land surveys. In this paper a novel algorithm, 
which can be used to detect ilmenite using hyperspectral 
image analysis is discussed. To investigate this task, a 
hyperspectral image obtained from the Earth Observing-1 
(EO-1) satellite’s Hyperion sensor was used. In the proposed 
algorithm, first, principal component analysis (PCA) was 
used for dimensionality reduction and an Euclidean distance-
based method was used to extract the pixels containing soil. 
Thereafter, lab spectral data of typical ilmenite deposits were 
considered as the reference and a correlation factor analysis 
was carried out to determine the soil pixels, which are most 
likely to contain ilmenite and most unlikely to contain ilmenite. 
Using these two sets of pixels, a training set was constructed 
to apply Fisher’s discriminant analysis (FDA) in order to 
separate the dataset into two distinct classes – ilmenite and 
non-ilmenite. Based on the spectral similarity, each pixel of the 
image was classified under one of these classes. This paper also 
introduces a probability-based approach to obtain results that 
are more accurate. A probability density function was designed 
considering the spatial distribution of the mineral. Thereafter, 
classification was done considering the probability measure as 
well. Lab tests performed on the soil samples collected from 
the locations, which were detected by the algorithm validate 
that the algorithm is accurate.

Keywords: Correlation coefficient, data engineering, 
Fisher’s discriminant analysis, principal component analysis, 
probability-based approach, remote sensing.

INTRODUCTION

A hyperspectral image contains information 
corresponding to a large number of continuous 
wavelengths. This facilitates the analysis and detection 
of intricate details of a given image. As the existence 
of a particular surface mineral results in a different 
composition of soil, compared to that of the places where 
the respective surface mineral is unavailable, image-
processing techniques can be used to detect possible 
deposits of surface minerals. The use of satellite images 
is a non-intrusive and economical way for surface 
mineral detection as it avoids strenuous land surveys 
and soil testing. Since hyperspectral data contains richer 
information in the form of contiguous spectral bands 
compared to multispectral images, the detection process 
is more accurate and reliable.

	 A number of papers have been published in the 
recent past, proposing different methods of determining 
possible surface mineral deposits using hyperspectral 
imagery. Applicability of hyperspectral data to determine 
trends in hydrothermal alteration intensity in and around 
the Izok Lake Volcanogenic Massive Sulfide (VMS) 
deposit in Northern Canada has been discussed by 
Laakso et al. (2016). An efficient procedure for mineral 
mapping is discussed by Notesco et al. (2014), with a 
unique hyperspectral remote-sensing fingerprint in the 
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longwave infrared spectral region enabling identification 
of the most abundant minerals in the continental crust 
- quartz and feldspars. The presence of copper in 
Basavanakote, Karnataka was found using hyperspectral 
remote sensing techniques by Aravinth & Roopa (2017). 
A new method has been introduced to extract features 
using mineral absorption by Zhao et al. (2017). Here, 
Reference Spectral Background Removal (RSBR) 
has been introduced into mineral absorption feature 
extraction from high vegetation density areas. Diagnostic 
absorption feature has the potential to be the key factor in 
mineral information extraction. Saralıoğlu et al. (2016) 
have attempted to explore minerals with hyperspectral 
image fusion. Due to the insufficient spatial resolution of 
current hyperspectral image sensors, a single pixel might 
include more than one mineral. This paper has revealed a 
method to overcome this problem by fusing such an image 
with a high-resolution image. Niranjan et al. (2016) have 
presented a study of minerals and vegetation in explored 
fields around the San Juan coal mines west of Farmington, 
New Mexico. Here, Minimum Noise Fraction (MNF) 
and Pure Pixel Index (PPI) methods are used for the 
extraction of endmember fraction, and spectral signature 
matching procedure is done with the United States 
Geological Survey (USGS) spectral library. Swamy 
et al. (2017) have carried out a dimension reduction 
based algorithm on complex wavelet filter bank and 
the mimetite mineral spectral signatures, and classified 
using the orthogonal subspace projection method. The 
desired mimetite spectral signature is segregated from 
the mixed pixels and estimated in the presence of two 
other minerals with the help of complex wavelet filter 
bank and spectral matching. Vithana et al. (2019) have 
exploited the relative proximity of spectral signatures 
among classes of remotely sensed hyperspectral images 
in order to generate an adaptive hierarchical structure 
for image classification. This enables a level-by-level 
optimisation for clustering at each stage of the hierarchy. 
Ekanayake et al. (2019) have proposed a novel method 
for hyperspectral unmixing, in which the fundamental 
notions of independent component analysis are utilised 
to improve the accuracy of the standard non-negative 
matrix factorisation algorithm. This method proves to 
be highly accurate with regard to hyperspectral image 
classification.

	 This paper presents a method of detecting possible 
ilmenite deposits in the Northeastern region of 
Sri Lanka, using concepts related to data engineering, 
mathematics, machine learning and signal processing, on 
a hyperspectral image of the respective region obtained 
by the Earth Observing-1 satellite’s Hyperion sensor.   
The detection algorithm first deals with classifying 

the pixels in the region under its sub components. It 
was observed that the selected geographical region 
constitutes mainly of vegetation, water bodies, paddy 
fields, beaches with sand, and soil. Thus, three main 
classes, i.e. ‘vegetation’, ‘water bodies’ and ‘sparse 
vegetation and soil’ were defined. Here, the class ‘sparse 
vegetation and soil’ covers areas where there are paddy 
fields, soil and sand. Throughout the rest of this paper, 
we refer the ‘sparse vegetation and soil’ class as ‘soil’. 
Thus, the primary intention is to classify the pixels in 
the selected image region under the relabelled classes, 
‘vegetation’, ‘water bodies’ and ‘soil’. Then, the pixels 
containing soil are extracted for further analysis in order 
to find out the regions containing ilmenite. A spectral 
signature for the composition of soil where ilmenite 
deposits exist was created using data available in 
spectral libraries. With the aid of the reference spectral 
signature created, a correlation analysis was carried out 
to select a training sample of pixels, which were then 
used to develop the detection algorithm. The results of 
the analysis were validated by a field visit, where soil 
samples were collected from several locations predicted 
by the algorithm. The lab results confirmed the presence 
of ilmenite in locations detected by the proposed method.

 
METHODOLOGY

Dataset

The hyperspectral image that was used in this 
analysis was captured by the Hyperion sensor (USGS, 
EO1H1410532005260110PU_SGS_01) attached to 
the NASA’s Earth Observing - 1 (EO - 1) satellite. The 
Hyperion sensor has the capability of resolving spectral 
bands from 0.4 µm to 2.5 µm - belonging to visible, 
near infrared and short wave infrared regions of the 
electromagnetic spectrum, with a spatial resolution 
of 30 m and a swath width of 7.5 km. The Hyperion 
sensor provides for two grating image spectrometers 
with detailed spectral mapping across all channels with 
high radiometric accuracy. These two spectrometers, 
VNIR (Visible and Near-Infrared) and SWIR (Short 
Wave Infrared) had been used to obtain the hyperspectral 
images consisting of 242 bands spanning across a range 
of wavelengths, from 355.59 – 2577.08 nm (Griffin, 
2005).

	 As seen in Figure 1(a), the hyperspectral image 
subjected to analysis in this paper is a strip along the 
Northeastern region of Sri Lanka, which covers a 
geographical area of approximately 7.5 × 100 km2. Its true 
colour version is shown in Figure 1(b). The geographical 
coordinates of the image are as follows:
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	Upper left corner	 -10.146810° N,   81.251940° E
	Upper right corner	 -10.133729° N,   81.319533° E
	Lower Left corner	 - 8.1372430° N,  80.818856° E
	Lower right corner	 - 8.1245150° N,  80.886088° E

The respective hyperspectral image strip was 
obtained from the USGS database (USGS, 
EO1H1410532005260110PU_SGS_01). The Level 
1Gst (L1Gst) product was used since all radiometric and 
systematic geometric corrections are performed in the 
L1Gst product. In addition, a 90-meter Digital Elevation 
Model (DEM) has been employed in this particular 
product. The image was available in the form of 242 
monochrome Geo ‘TIFF’ images belonging to each of 
the 242 spectral bands. The size of the image was 7481 
× 1851 pixels and each pixel covered an area of 30 × 
30 m2. The data included in the images were radiance 
values and were processed by a scaling factor of 40 for 
the images obtained through the VNIR camera in the 
range of wavelengths from 400 – 1400 nm (bands 1–70), 
and by a scaling factor of 80 for the images obtained 
by the SWIR camera in the range of wavelengths 
from 900 – 1700 nm (bands 71–242). There were 
44 uncalibrated bands among the 242 bands (USGS, 
EO1H1410532005260110PU_SGS_01).

	 In order to reduce the time of computation, algorithms 
were performed only on a selected region - the region 
displayed in Figure 1(c), which spanned from the rows 
5627 to 5801 of the original image.

Preprocessing

Preprocessing is an essential procedure that should be 
done in remote sensing applications. It plays an important 
role, being a stage done prior to any form of data analysis 
and hence is important in hyperspectral image analysis 
as well. It essentially prepares and structures the dataset 
to a form, which could be input directly to the algorithm 
used, in a much efficient and effective manner. Simply, it 
converts the dataset to a more qualitative and productive 
form. 

Conversion from radiance to reflectance

Hyperspectral image analysis uses reflectance values 
since it is the property, which varies with the chemical 
composition of materials. In addition, reduction in 
between-scene variability can be achieved through 
a normalisation for solar irradiance. Thus, spectral 
radiance values were converted to reflectance 
values by using the following equation (USGS, 
EO1H1410532005260110PU_SGS_01). The strength 
of the conversion from radiance to reflectance was 
acceptable when considering the mean spectral signatures 
of the three classes as in Figure 2(a) for the spectral bands 
with high signal to noise ratio (SNR).
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Figure 1:	 (a) The geographical location of the hyperspectral image strip; (b) true colour 
version of the hyperspectral image strip (the area chosen for analysis is marked by a 
red square); (c) the area chosen for analysis - image size 273 × 251 pixels

(a) (b) (c)
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accurate results. Thus, the influence of the smiling effect 
could be considered negligible.
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	 =	 standard deviation of the ith pixel’s 
spectral data

                                 	
Subtracting the mean of spectral data of each pixel from 
its original data was done in order to remove any biases 
in pixels. Normalising with respect to standard deviation 
was done with the intention of minimising the effect of 
power variation across the spectral bands of each pixel. 
After performing these calculations, a standardised 
dataset was obtained to be input to the algorithms 
developed.

Classification algorithm - sub component analysis

The first stage of the algorithm follows a similar 
approach to what is discussed by Ekanayake et al. (2018) 
and Vithana et al. (2019). A straightforward method, 
which considers the vector representation of spectral 
characteristics of a pixel, has been used. After removing 
the 44 uncalibrated bands, 198 properly calibrated bands 
were remaining so that a single pixel has a spectral 
signature representing reflectance values corresponding 
to 198 bands. Thus, a single pixel can be represented 
in a 198-dimensional space, which is impossible to 
illustrate yet mathematically explicable, where each axis 
represents a spectral band in reflectance units.

	 The intention of the initial stage was to classify the 
pixels in the selected image region under its underlying 
classes. Moreover, the algorithm discussed by Ekanayake 
et al. (2018) identifies the pixels that contain more 
than one component (mixed pixels) along with their 
percentages. Since this algorithm requires normalised 
data, the standardisation mentioned in the earlier section 
is essential.
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done by USGS when processing the image, it is necessary to rescale them back to their original values. 

Therefore, the radiance values should be divided by 40 for bands 8–57 and by 80 for bands 77–224 

(EarthExplorer–Metadata, 2005). Earth-Sun distance in astronomical units, for a set of days of the 

year, is given (EarthExplorer–Metadata, 2005). The distance applicable to the day that the respective 

image was captured, can be found by performing a linear interpolation. Mean solar exoatmospheric 

irradiances relevant to each band is given (EarthExplorer–Metadata, 2005). The Solar Zenith angle 

based on location, date and time can be found in the metadata sheets available along with the 

hyperspectral image from USGS. The Solar Zenith angle was assumed constant throughout the region 

of interest because the image spans across a relatively small geographical region and has been 

captured within a small period of time (4 mins 38 sec). The image dependent parameters used for 
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Spectral radiance at the sensor’s aperture are the values 
already given in the images. Due to the scaling done 
by USGS when processing the image, it is necessary to 
rescale them back to their original values. Therefore, the 
radiance values should be divided by 40 for bands 8–57 
and by 80 for bands 77–224 (USGS, 2018). Earth-sun 
distance in astronomical units for a set of days of the 
year is given in USGS, (2018). The distance applicable 
to the day that the respective image was captured can 
be found by performing a linear interpolation. Mean 
solar exoatmospheric irradiances relevant to each band 
is given in USGS, (2018). The solar zenith angle based 
on location, date and time can be found in the metadata 
sheets available along with the hyperspectral image from 
USGS. The solar zenith angle was assumed constant 
throughout the region of interest because the image spans 
across a relatively small geographical region and has 
been captured within a small period of time (4 min 38 s). 
The image-dependent parameters used for equation (1) 
are shown in Table 1. Other band-dependent parameters 
such as mean solar exoatmospheric irradiance could be 
found at USGS, (2018).

Parameter Value

Earth-sun distance 1.0051 astronomical units

Solar zenith angle 27.52°

Table 1:	 Parameters used to convert the image from radiance 
values to reflectance values

Standardisation of the dataset

The image chosen for analysis consists of reflectance 
values of spectral bands obtained for each pixel. 
Therefore, it is obvious that the dataset could be affected 
due to factors such as different lighting conditions, 
different atmospheric conditions, measurement errors, 
and noise. Therefore, the spectral data of identical pixels 
would have the possibility of being different, which 
would lead to inaccuracies in the analysis. In order to 
remove or minimise the effect of such factors that are 
not characteristics of the contents of the pixel, the dataset 
was standardised by zero meaning and normalising with 
respect to the standard deviation (Oorloff et al., 2017) 
using equations (2) to (5). The smiling effect was not 
taken into consideration. Solely addressing the biases 
with respect to mean and standard deviation gave 
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Since a large amount of data introduces redundancy and 
complexity to the analysis, principal component analysis 
(PCA) (Tyo et al., 2003; Raiko et al., 2007; Zabaiza et al., 
2014) was used to transform the 198-dimensional space 
into a 20-dimensional space where the variation of the 
dataset was maximum. To find the transformation matrix 
in PCA, a training set of 60 pixels was chosen, 20 from 
each class - soil, vegetation and water bodies. The training 
set was selected with the aid of Google Earth Pro and 
the Image Processing toolbox available in MATLAB®. 
Equations (6) to (10) were used to implement PCA and 
transform the dataset on to a 20-dimensional space.

11 
 

space – which is impossible to illustrate yet mathematically explicable, where each axis represents a 

spectral band in reflectance units. 

The intention of the initial stage is to classify the pixels in the selected image region under its 

underlying classes. Moreover, the algorithm discussed by Ekanayake et al. (2018) identifies the pixels 

that contain more than one component (mixed pixels) along with their percentages. Since this 

algorithm requires normalized data, the standardization mentioned in the earlier section is essential.  

Since a large amount of data introduces redundancy and complexity to the analysis, Principal 

Component Analysis (PCA) (Tyo et al., 2003; Raiko et al., 2007; Zabaiza et al., 2014) was used to 

transform the 198-dimensional space in to a 20-dimensional space where the variation of the dataset 

was maximum. To find the transformation matrix in PCA, a training set of 60 pixels was chosen, 20 

from each class - soil, vegetation and water bodies. The training set was selected with the aid of 

Google Earth Pro and the Image Processing toolbox available in MATLAB®. Equations (6) to (10) 

were used to implement PCA and transform the dataset on to a 20-dimensional space. 

𝐶𝐶 =  𝐸𝐸{(𝑋𝑋� − 𝜇𝜇)(𝑋𝑋� − 𝜇𝜇)�}      (6) 

𝐶𝐶 =  �
�

∑ (𝑋𝑋� − 𝜇𝜇)(𝑋𝑋� − 𝜇𝜇)��
���  (7) 

𝐶𝐶𝐶𝐶 =  𝜆𝜆𝜆𝜆           (8)                                                           

Where,  

𝐶𝐶  = covariance matrix, 

𝐸𝐸  = expected value operation, 

𝑋𝑋� = vector representing the spectral band information of a pixel, 
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After applying PCA, each pixel can now be represented 
in a 20-dimensional space. Moreover, each pixel can 
be represented as a vector in a 20-dimensional space. 
In this 20-dimensional space, the direction of each 
vector characterises the spectral behaviour of the pixel. 
However, the magnitude of the vector could vary due to 
the effects of the environment, sensing equipment, etc. 
Therefore, the directions of the vectors were considered as 
the basis for the classification task. In order to normalise 
the magnitude, each vector was divided by its Euclidean 
norm using equation (11). Now all the pixels have a 
unit magnitude and as mentioned above, the spectral 
characteristics of each pixel are denoted by the direction 
of the vector representation in the 20-dimensional space.
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The reference spectral signatures belonging to each class 
- soil, vegetation and water bodies, were constructed by 
considering the means of the training set of each class, 
i.e. three reference vectors were constructed to represent 
soil, vegetation and water bodies by taking the 20 training 
samples of each class and calculating the mean vector. 
The Euclidean distance between each pixel vector in the 
image and the three reference vectors were calculated to 
form a distance vector for each pixel, which is given by,
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Although the distance vector was calculated, the 
requirement is to obtain a measure of affinity. Thus, the 
reciprocal of the distance vector was considered and 
an affinity vector was calculated, which represented 
the percentage affinity of a given pixel to the reference 
spectral characteristics of the three classes using equation 
(13). The unmixed pixels were selected using a threshold 
for the largest affinity percentage as in equation (14).
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The classification criteria used was, 

 If 𝜏𝜏 ≥ 50 %, the considered pixel was classified under the class, which has the maximum 

affinity. 

	 =	 maximum affinity percentage of the affinity 
vector and the other terms are the same as before.

The classification criteria used were,

	If  50 %, the considered pixel was classified under the 
class, which has the maximum affinity.
	If  50 %, the pixel was labelled as a ‘mixed pixel’ and 
the percentage of each end member (soil, vegetation and 
water) was obtained by the percentage affinity vector.

	 Figure 2(b) shows the classified image according 
to the above criteria. It is clearly seen that these results 
show an accurate correlation with the true colour version 
of the image depicted in Figure 1(c). Using the above 
criteria, the pure unmixed soil pixels were determined. 
These pixels were noted in order to perform the next step 
of the algorithm.	 		     

Figure 2:	 (a) The spectra of the three reference vectors created (b); the classified hyperspectral image under soil (brown), vegetation 
(green), water bodies (blue) and mixed pixels (yellow) 

(a) (b)

Identification of probable ilmenite deposits

The coastline along the Northeastern region of Sri Lanka 
around Pulmudai is rich in mineral sand, especially 
ilmenite. With the intention of identifying probable 
ilmenite deposits using hyperspectral images obtained by 
the Hyperion sensor of the Earth Observing - 1 satellite, 
an algorithm was developed using correlation coefficient 
analysis and Fisher’s discriminant analysis (FDA). The 
accuracy of the results was further enhanced by utilising 
a probability-based approach dependent on the spatial 
distribution of the ilmenite deposit.

Correlation analysis

According to Premaratne & Rowson (2003), the mineral 
percentages of the soil in the coast around Pulmudai, 
which is our target region of analysis is as in Table 2. 

	 Then, a reference signature, which is shown in 
Figure 3, was constructed to represent the soil, which 
probably would consist of ilmenite. The construction of 
the reference spectral signature was done by obtaining 
the lab spectral signatures of the constituents from USGS 
spectral library (Kokaly et al., 2017) and by weighing 
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each of the spectra by their respective percentages 
depicted in Table 2, after normalising to remove any 
biases in the signatures. 

the Hyperion sensor. The SNR of the Hyperion sensor 
depicted in Figure 3(b) shows that the SNR fluctuates 
with the wavelength whilst having significantly low 
SNR values at certain ranges of wavelengths. As the 
data in the regions of low SNR values would not yield 
useful information and would distort the results, the data 
in the regions of SNR values below 50 were removed 
from both the Hyperion dataset as well as the reference 
signature created.

	 Ilmenite has unique spectral characteristics, which is 
explicitly seen even in compounds consisting of ilmenite. 
This can be clearly seen when comparing the spectral 
signatures of various types of minerals available in the 
USGS spectral library (Kokaly et al., 2017). Hence, 
in the process of obtaining a training set of pixels for 
ilmenite deposits in the region, first, the pixels containing 
soil were isolated using the classification algorithm 

Mineral	 Percentage (%)

Ilmenite	 71 
Quartz	 10 
Zircon	 10 
Rutile	 8 
Sillimanite	 1

Table 2:	 Mineral percentages in the Northeastern coast

Figure 3 :	 (a) Reference spectral signature of the ilmenite deposits and its component; (b) signal to 
noise ratio (SNR) of the hyperion sensor

(a)
(b)
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However, the lab spectral data generally has a higher 
SNR compared to the hyperspectral images obtained by 
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discussed in the earlier section of this paper. Then, a 
correlation coefficient analysis was carried out between 
the created reference spectral signature and the pure soil 
pixels classified by the aforementioned algorithm, using 
equation (15).
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	 Thereafter, based on the correlation values obtained, 
20 soil pixels that were highly correlated with the 
reference spectral signature were taken as the training set 
of ilmenite deposits, and the 20 least correlated pixels 

were taken as the training set for non-ilmenite deposits. 
The spectral signatures of the training sets are shown 
in Figure 4, and it could be seen that the training sets 
of ilmenite deposits and non-ilmenite soil pixels are 
distinct.

Transforming to a new space

Increasing the separability of classes would ease 
classification in the process of identifying the probable 
ilmenite deposits. Hence, Fisher’s discriminant analysis 
was used to transpose the pixels on to a new space in 
which the separability of the two classes - ilmenite and 
non-ilmenite, is increased. Fisher’ discriminant analysis 
(Imani & Ghassemian, 2015; Sugiyama, 2016; 2017) 
was applied on the aforesaid training set using equations 
(16) to (19). The idea of using Fisher’s discriminant 
analysis is to transform the dataset into a new space where 
the scatter between the two classes is maximised while 
the scatter within a class is minimised. The equations 
below were used to construct the Fisher’s transformation 
matrix.
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Since it is required to minimize the within-class scatter and increase the between-class scatter, the 

transformation matrix was constructed by considering eigenvalues and the eigenvectors of the Fisher 

matrix given by equation (20). Using these eigenvectors, data were transformed into a new space with 

reduced dimensionality using equations (21) and (22). 
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Figure 4:	 Spectral signatures of the training sets of (a) ilmenite deposits; (b) non-ilmenite soil (the reference signature is marked in red)

(a) (b)
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Where,

Sb  	 =	 between-class scatter matrix
μ 	 =	 vector representing mean spectral information 

of all pixels
μi 	 =	 vector representing mean spectral information 

of the pixels of class i
ni 	 =	 number of training pixels in class i
l 	 =	 number of classes
Sw 	 =	 within-class scatter matrix
xj	 =	 vector representing the spectral information of a 

pixel in the training class i
xi	 =	 vector representing the spectral information of a 

pixel in the training set
n 	 =	 total number of training pixels

Since it is required to minimise the within-class scatter 
and increase the between-class scatter, the transformation 
matrix was constructed by considering the eigenvalues 
and eigenvectors of the Fisher matrix given by equation 
(20). Using these eigenvectors, data were transformed 
into a new space with reduced dimensionality using 
equations (21) and (22).
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V1 = matrix representing all the pixels in the original space, 

V2 = matrix representing the pixels in the new space, 

𝜑𝜑� 𝜑𝜑�……𝜑𝜑� = real eigenvectors of the Fisher matrix. 

Subsequently, all soil pixels were transformed into the new space using the aforementioned 

transformation matrix. This transformation resulted in the increase of the scatter between the classes 

of ilmenite and non-ilmenite while reducing the scatter or in other words contracting each of the 

clusters of ilmenite and non-ilmenite. Finally, each pixel vector was normalized with respect to its 

magnitude using equation (23). 
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	 =	 real eigenvectors of the Fisher matrix

Subsequently, all soil pixels were transformed into the 
new space using the aforementioned transformation 
matrix. This transformation resulted in the increase of the 
scatter between the classes of ilmenite and non-ilmenite 
while reducing the scatter or in other words contracting 
each of the clusters of ilmenite and non-ilmenite. Finally, 
each pixel vector was normalised with respect to its 
magnitude using equation (23).
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Where, 

x	 =	 a pixel vector
|x|	 =	 magnitude 
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In order to classify the pixels into the two classes, the 
spectral similarity of each pixel with the mean spectral 
signature of the training set of each class was calculated 
using equation (24).
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𝛼𝛼�� =  �
||����_��� �(�,:)� ��������||

      (24) 

Where, 

𝛼𝛼��                         = spectral similarity of the ith pixel’s spectral signature and the kth class (k = 1               

  for ilmenite and k = 2 for non-ilmenite), 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑚𝑚𝑚𝑚𝑚𝑚 �(𝑖𝑖, : )  = the normalized spectral signature of the ith pixel, 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑟𝑟𝑟𝑟𝑟𝑟�        = mean reference spectral signature of the training set of the kth class. 

 

Finally, each pixel was labeled as ilmenite or non-ilmenite based on the spectral similarity measure, 

𝛼𝛼. If the spectral similarity between a certain pixel and the mean reference spectral signature of 

ilmenite class was higher than the spectral similarity between that particular pixel and the mean 

reference spectral signature of non- ilmenite class, then that pixel was classified under ‘ilmenite’, and 

vice-versa. 

Probability-based approach 

In the Pulmudai region, ilmenite has a larger probability to be found in the coastal area. Statistically, 

there is a larger probability within 600m from the coast, and from there onwards, the probability of 

finding ilmenite falls gradually. Thus, a probability density function was approximated in such a way 

that the probability of finding ilmenite was constant until 600m. From there onwards, the probability 

was approximated to fall exponentially as shown in Figure 5. The spatial information used to generate 

the probability density function can be found in Overstreet (1972). 

 	 ...(24)

Figure 5:	 Probability density function of the probability of finding ilmenite against the 
distance measured from the coast
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Figure 6:	 Recreated map of the region identifying probable ilmenite deposits (a) based on the spectral similarity measure, α (identified 
pixels are depicted in white); (b) based on the novel probability-based approach considering the joint measure, β (identified 
pixels are depicted in white)

(a) (b)

Where,
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Figure 7:	 Block diagram of steps followed to extract ilmenite from the soil samples
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The remaining soil samples were inserted to the FRANTZ Magnetic Separator 
Model L-1 (S. G. FRANTZ CO, 2018) while the current was controlled at 0.4A. 

Ilmenite was distinctly isolated by the separator.

A hand magnet was used to separate magnetite mineral from the obtained soil 
samples, as the magnetic separator used for ilmenite extraction at the next stage 

cannot be used with soil samples containing magnetite mineral.

After drying the samples, they were passed through a sieve to remove the larger soil 
particles.

The soil samples were thoroughly washed with distilled water to remove the 
impurities.
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Finally, each pixel was labelled as ilmenite or non-
ilmenite based on the spectral similarity measure, α. If 
the spectral similarity between a certain pixel and the 
mean reference spectral signature of ilmenite class was 
higher than the spectral similarity between that particular 
pixel and the mean reference spectral signature of non- 
ilmenite class, then that pixel was classified under 
‘ilmenite’, and vice versa.

Probability-based approach

In the Pulmudai region, ilmenite has a larger probability 
to be found in the coastal area. Statistically, there is a 
larger probability within 600 m from the coast, and 
from there onwards, the probability of finding ilmenite 
falls gradually. Thus, a probability density function was 
approximated in such a way that the probability of finding 
ilmenite was constant until 600m. From there onwards, 
the probability was approximated to fall exponentially 
as shown in Figure 5. The spatial information used to 
generate the probability density function can be found in 
Overstreet (1972).

	 Using this novel probability-based method, the 
classification was done while considering the probability 
of finding ilmenite in each pixel as well. Thus, it is 
expected to obtain results with more bias towards the 
coastal region of the geographical area and less bias as 
the distance increases from the coast.

	 In order to classify the pixels in the region into the 
two classes, using this novel probability-based approach, 
a similar method was used as earlier, but with a slight 
modification. This time, the probability to find ilmenite 
at each pixel was also considered. First, as in equation 
(24), the spectral similarity measure, α was calculated. 
Then equation (25) was used to calculate the novel joint 
measure. 
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	=	 Probability of finding ilmenite on the 
region denoted by the ith pixel 

Finally, each pixel was labelled as ilmenite or non-
ilmenite based on the joint measure, β. If the joint 
measure between a certain pixel and the mean reference 
spectral signature of the class, ilmenite was higher than 
the joint measure between that particular pixel and the 
mean reference spectral signature of the class, non-
ilmenite, then that pixel was classified under ‘ilmenite’, 
and vice-versa.

RESULTS AND DISCUSSION

The results generated using spectral similarity measure, 
α was mapped as shown in Figure 6(a). The results 
generated using the novel probability-based algorithm 
considering the joint measure, β was mapped as shown in 
Figure 6(b). As expected, the probability-based approach 
based on the spatial distribution of the ilmenite deposit 
has given more bias towards the coastal region of the 
geographical area and less bias as the distance increases 
from the coast. Thus, the results obtained from the 
probability-based approach were taken into consideration 
for validation.

	 In order to check whether the identified pixels 
actually contained ilmenite, soil samples were collected 
from a few locations recognised by the probability-based 
algorithm. A total of eight locations were selected from 
the map in Figure 6(b), and their soil samples were 
taken for lab testing. The steps depicted in Figure 7 were 
followed during the testing process.
	
	 The weight measurements taken during the testing 
were used to calculate the ilmenite percentage of each 
sample. The results are shown in Table 3.

	 The areas, which were not identified to exist ilmenite 
from the probability-based algorithm showed no visual 
observations of existence of ilmenite. Thus, soil samples 
from those areas were not taken for laboratory testing.

	 Hyperspectral imaging is an emerging technique 
used for feature extraction and classification using 
hyperspectral image data. This stands out from other 
image processing techniques due to its ability to identify 
fine features of an image, which is not detectable by 
other image processing techniques. This is mainly used 
in land cover mapping, facial recognition, agriculture, 
and military applications.
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In this paper, the main focus was to develop a universal 
algorithm to detect ilmenite mineral based on the unique 
spectral characteristics of the areas where the particular 
mineral is located. Based on that, an algorithm was built 
and the lab testing proves that the locations detected by 
the novel algorithm actually contained ilmenite.

	 The classification algorithm used in classifying the 
pixels containing soil was a combination of PCA and 
comparison of affinity based on Euclidean distance. The 
classification process resulted in an image similar to the 
true RGB image. It could further be concluded that the 
part of the image of a strip in Northeastern Sri Lanka 
is mainly covered by soil, followed by foliage. Water 
bodies are much less in the region of consideration.  

In the second part of the algorithm, the soil only pixels 
were solely taken into consideration. A reference spectral 
signature for ilmenite deposits was created using lab data 
and it was compared with the pixel signatures of the 
image. Using a correlation coefficient analysis, a training 
set was formed by including the highest correlated and 
the lowest correlated soil only pixels. Then Fisherʼs 
discriminant analysis was performed to further separate 
the two classes – ilmenite, and non-ilmenite and the 
classification was done by comparing the spectral 
similarity of each pixel with the mean spectral signatures 
of the two classes. In order to further enhance the 
results, a probability-based approach was utilised. A 
probability density function was designed to determine 
the probability of finding ilmenite with the distance 

Sample
No.

Coordinates Snapshot Ilmenite percentage
from lab testing

1 8.890481° N,
81.031436° E

0.59 %

2 8.891395° N,
81.030864° E

1.53 %

3 8.891396° N,
81.028555° E

12.27 %

4 8.895059° N,
81.028557° E

10.73 %

5 8.895081° N,
81.009026° E

1.95 %

6 8.894307° N, 
81.011228° E

3.80 %

7 8.8921107° N, 
81.0159079° N 

5.70 %

8 8.897387° N,  
81.005462° E

8.17 %

Table 3:	 Results of the lab testing on the soil samples collected from the locations near Pulmudai
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measured from the coast. Results were generated taking 
the probability of finding ilmenite into account as well. 
Eight locations were chosen from those results and soil 
samples were collected for lab testing, which ultimately 
proved that all those eight locations contained ilmenite.

	 A mineral sands deposit, which is suitable for 
mineral extraction typically has a heavy mineral grade 
(HM grade) ranging from 0.5 % to above 20 %. It was 
observed that all eight locations considered for testing 
contained ilmenite within that range. Some locations 
contained very high relative percentages of ilmenite 
(sample no. 3 – 12.27 % and sample no. 4 – 10.73 % 
as seen in Table 3). These amounts are suitable for the 
extraction of the mineral for commercial use. Thus, this 
indicates that the algorithm established gives accurate 
results in finding probable ilmenite deposits, which could 
be used for commercial purposes.

	 Prior evidence suggested of an ilmenite deposit in the 
Pulmudai region of Sri Lanka. Thus, the study was based 
on that particular region only. In addition, due to the 
lack of hyperspectral databases, the number of satellite 
hyperspectral images covering the areas in Sri Lanka 
are minimal. This prevented us from looking into the 
adjacent areas for the possibility of the existence of 
ilmenite.

CONCLUSION

The objective of developing an algorithm to detect 
ilmenite deposits in Pulmudai region using hyperspectral 
images is successful. This novel algorithm, which is based 
on feature reduction and classification methods, signal 
processing techniques and statistical and mathematical 
tools, proves to give highly accurate results. Lab testing 
performed on the collected soil samples further validates 
the results.
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