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stract : Suppose P and P° denote closed positive and open positive quadrants in
R” réspectively. Let A he any lattice in R2 with polar lattice A™. Let F be a convex
and symmetric (with respect to the axes of coordinates) distance function with
F(1 0) = F(O,t) = 1, where t €R and let U = area (x S R2/F(__) < 1). For certain
distance functions F, there exist non-zero x € P N A and y €P° N'A¥ such that

M F(x) F(_Z) < 'y ‘where y_is a constant depending on t and the distance function.
There exist a lower bound 2(t + 1/t) and an upper bound 4(t + 1/t) for 'y over all
convex symmetric distance functions.

1. Int_roduétion

Let P and P° denote closed positive and open positive quadrants in RZ
respectively. Let A be any lattice in R2 with polar lattice A*. Let F be a
convex and symmetric (with respect to the axes of coordinates) distance
function with F(1,0) = F(0,t) = 1, where t € R. Without loss of generality
we can take t > 1. If t < 1, we have the same situation as in the case when
t > 1 with the coordinate axes interchanged. Let u = area{gER2/f(g) < 1}.

Hossain and Worley3 have shown that for certain distance functions F,
there exist non-zero xXEPNA and y€P°n A¥ such that

pFERFE) <74

where v is a constant depending on t and the distance function. In this note
we show that Yt has a4 lower bound and an upper bound over all the convex
symmetric distance functions. In this note symmetric means the symmetri-
city with respect to the axes of coordinates.

2. Discussion

The following notations will be used frequently in this section.

Fy ()= inf{F(x) : x € AmP}
Fy (n*) = int{F(x*) : x* € A*nBO } |

where F is a distance function.

/
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Theorem:

If F is any convex symmetnc distance function with F(1, O) F(0,t)=1,
then

20+1/t) < Fp (A) Fo (A *) < 4(t+1/t)
for the lattice A with basis{(l,O), (O,t)}

The lower bound is best possible for the distance function F(xl Xg) =
Ixq 1+ 1/t Ixg | and the lattice A with a basis (1,0) and (0,t). The upper
bound may not be best possible, but cannot be below 4t. In order to prove
the theorem, we use the following lemmas.

Lemma 1
Let A be the lattice with a basis: {(1 0), (0 t)} Then
m1n rEF{(A) F2(A ) = 2(t+1/t), for the convex symmetric polygonal distance

functlon F given by
1-a 1-a
F(xq, =max) = %Ik [+ 1/tIxe |, Ixq 1+ 1% )% I}
(x1.%9) {2 Ry 1+ Utixg 1, 1xg o X2

where 1/2 < o« < 1.

(a has to satisfy the above conditions since F is convex and symmetric).

Lemma 2

Let A be a lattice with basis§(1,0),(0,t) }. Let F be the convex poly-
gonal distance function, where F(x1,x9)=1 has two more vertices at (o at)
and (B8,8/t) in PO in addltlon to (1,0) and (O, t) where 1/2 < o € 1 and the
limit of 8 depends on «.

Then rni_E uFq (M) Fo(A™)> 2(t+11).

From Lemma 1 and Lemma 2, we can establish the left hand 51de of the
inequality in the theorem.

Suppose F(x1,X9) = 1 intersects the
lines OL at B and OM at C respectively,
where L = (1,t) and M = (1,1/t).

- Let B = (a,at) and C = (8,8/t).

The curve F(x1,x9) = 1 passes through
the points A = (0,t) and D = (1,0).
Then F{(A) =1.
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. ol x"

The curve F(xl,xz.) =.1 passes through the points A = (0,t) and D = (1,0). It
intersects the lines OL at B and OM at C respectively, where L = (1,t) and
M= (1, 1/t).

.Figure 1.
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and F3(A™) = F(1,1/t) = 1/8 F(8,8/t) = 1/8.

Let G(x1, Xg9) = 1 be the equation of the polygonal arc ABCD. Then for this
distance function G,

G1(A)=1and Go(A™¥) = 1/8

let u G*= 4 X area {polygon OABCD}
Then from-Lemma 2 we have

L s
g G1(A) Go(AT) = 1G-1/g > 2(t + 1/t) for all suitable a and B.
Now let u = area{,g_e R2:F x)< 1} .

Then from the convexity u > pg.

Hence uFy (A) Fo(A™)=u. 1/8>ug. 1/8 > 2(t+1/t).
ie we have proved that

wF{(A) F (A ) = 2(t+1/t) for all convex symmetric distance
functions F and the lattice A with basis (1 0) and (0,t).

mFl‘n pF{(A) Fo(A™) > 2(t+1/t).

Now we proceed to prove the right hand side of the mequahty in the
theorem. p

Let A be any two dimensional lattice and (a,p) € A N P° and
(—c,d) € ANQ be two points such that F(a,b) and F(d,c) are minimal, where
Q is the open second quadrant.

Note that if (—c,d) € A, then (%t%e A* , Where d(A) is the determ1-
nant of A.

Let D ={(x1, x5) € R% : F(xq, x9) < F(a,b), F(~xg, x1) < F(d,0)}.

Then from the choice of (a,b) and (—c,d) there are non-zero points of A in D.

Then there are no non-zero points of A in the parallelogram.
{ (x1,x9) € R2 i =X +txg | < tF(d,c), |txq+xg | <t F(a,b)]}
which lies entirely in D :

1

Hence by Minkowski’s linear form theorem~, we have

2 F@ab) F(de) < (1+t2) d(A).
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F(ab) £@:©) <1+ 12,
d( A)

Now u = area-{(xl, xz) S R2 : F(Xi’ x2) < 1}
< 4t, as F(x1, x9) is convex and symmetric.

Jon Fy(A) F2(A*)‘ < 4(t+1/t).
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