
RESEARCH ARTICLE

J.Natn.Sci.Foundation Sri Lanka 2017 45 (1): 13 - 22

DOI: http://dx.doi.org/10.4038/jnsfsr.v45i1.8033

Indexing for semantic cache to reduce query matching complexity

* Corresponding author (munirahmad83@gmail.com)

Munir Ahmad*, M. Abdul Qadir and Tariq Ali
Department of Computer Science, Faculty of Computing, Capital University of Science and Technology, Islamabad, Pakistan.

Cache is an important service to enable faster data

access for distributed data storage systems. A cache system

with a higher hit ratio and a lower query processing time is

a potential to maximise the hit ratio as compared to other cache

organisation techniques because it has an ability to answer

fully as well as partially overlapped queries. It is a challenge

to determine the overlap between incoming queries and stored

semantics (semantic matching) with minimum time. To store

role in the complexity of semantic matching is the indexing

scheme. Existing indexing schemes store each disjoint

query (on the base of projection) into different segments and

the number of segments can grow to exponential (2n-1, where n

is the number of queried attributes) in the worst case. This will

lead to an exponential complexity semantic matching scheme.

We propose a schema based on semantic indexing that enhances

scheme, we have merged query semantics with the schema. On

the basis of the proposed indexing scheme, we have designed a

query matching algorithm (sMatch). It is proved that the time

complexity of sMatch is polynomial while the complexity

of other matching algorithms is exponential. In addition to

reducing the complexity of semantic matching, schema based

storage of semantics would reject incorrect queries and enhance

the hit ratio in cases where the non-schema based schemes

of incorrect queries and improved hit ratio, complexity based

and experimental results are presented. The results show that

previous ones.

 Distributed databases, knowledge management,

query matching, query processing, semantic cache, semantic

indexing.

INTRODUCTION

Faster information retrieval in a large distributed database

system (DDBS) is a challenging task. Slower retrieval of

data is the major problem in DDBS, especially when the

network or server load is high (Chen & Roussopoulos,

et al., 2009). The

overall retrieval time can be reduced when the same data

needs to be accessed frequently. A good caching near

the response time, increase the throughput, and provide

fault-tolerance (Chen & Roussopoulos, 1994; Dar et al.,

et al., 2009).

 A cache system does not come without a cost and

has management overheads. To keep the overheads

at a minimum, one has to manage the cache system

intelligently (Ahmed et al., 2005). There are many

techniques to manage cache systems such as adaptive

database caching (Cluet et al., 1999; Altinel et al., 2003),

semantic caching (Ren et al., 2003; Ahmed et al., 2005;

2008a; b; 2009; 2010; 2012; Ahmad & Qadir, 2009), page

caching and tuple caching (Ren et al., 2003). A caching

technique that stores data as well as semantics of executed

queries is referred to as a semantic cache. Semantic cache

enhances the performance of conventional cache by

answering partially overlapped queries (Dar et al

Ahmad et al., 2008b). In semantic cache, the semantics

of a newly posed query are matched with the stored

semantics of already processed queries. On the basis of

semantic matching, a user query is divided into two sub-

queries: probe (portion available at cache) and remainder

(portion that is not available at cache) queries (Dar et al.,

14 Munir Ahmad et al.

March 2017 Journal of the National Science Foundation of Sri Lanka 45(1)

et al., 2003). Probe query is processed locally

and remainder query is processed at the server side.

There are two basic factors to evaluate the performance

of a cache system; hit ratio (h
r
), and query processing

(Q
pt
) time (Ahmad et al., 2008a; b).

 Cache is called hit if data is found in it (Cai et al., 2005;

Ahmad et al., 2008a) and hit ratio is the percentage of

user posed queries that can be answered locally (partially

or fully) from the cache. Therefore, the cache system

should be designed in such a way that it increases the

of stored data (Ahmad et al

reuse of stored data, lesser amount of data is required

to be retrieved from remote locations. In this context it

system.

 Query trimming (Q
tr
) and query rebuilding (Q

rb
) are

two major activities in query processing (Roussopouls,

1991). The query trimming process splits the user query

into probe and remainder queries, whereas the query

rebuilding process merges the results of probe and

remainder queries. Query trimming process is further

divided into two basic steps.

 First, semantics of the newly posed query are

matched with the stored semantics on cache, which is

called query matching (Q
m
). The query matching process

helps out to enquire about the availability of data in

hidden semantics out of the stored semantics in cache.

ratio. Optimum query matching ensures optimum query

trimming. The query matching process depends on how

the semantics of already processed queries are indexed

(S
ind

).

 In the second step of query trimming, the user

posed query is divided into two sub-queries; probe

and remainder. The division process of a posed query

depends upon the splitting algorithm as well as on how

trimming depends on the indexing scheme.

 The focus of this paper is to optimise the query

trimming process. This goal is achieved by proposing

an indexing scheme and a query matching algorithm. A

critical analysis of existing indexing schemes has been

time. On the basis of the critical analysis, limitations of

the existing schemes such as run time complexity and hit

ratio have been highlighted. A schema based hierarchical

semantic indexing scheme has been proposed that

proved useful to overcome the limitations of the existing

schemes. An algorithm for query matching (sMatch) is

designed for SELECT and PROJECT queries by using

the query splitting algorithm (Sun et al., 1989; Guo

et al et al., 2010). Complexity analysis of

the proposed algorithm and existing schemes has been

done. On the basis of complexity analysis, it has been

found that the proposed indexing scheme is instrumental

in decreasing the query matching complexity from

0 (m x n x (2n-1)) to 0 (m x n). sMatch has an ability to

process Select* type queries and due to this the hit ratio

is increased. Finally, a comparison was done with the

existing well-known algorithms proposed by Ren et al.

(2003) and Ahmad et al. (2010) on the basis of hit ratio

and query processing time. From the comparison we

conclude that the proposed algorithm reduces the query

relational algebraic notations that are used in the paper.

: User query (Q
U

) will be represented by

D, Q
A

, Q
P

, Q
R

, P
A

D is the name of

the database, Q
A
 is a set of required attributes, Q

R
 is a

relation, Q
P
 is a condition and P

A
 is a set of attributes in

predicate.

: Given a database D = {R
i
} and its attributes

set A = A
Ri C

will

D, S
A
, S

P
, S

R
, S

SA
, C D is the name

of the database, S
R
 is the name of relation, S

A
 is a set of

attributes, S
SA

 is a status of attributes, S
P
 is the predicate

(condition) on which data has been retrieved and cached,

and C is the reference of contents.

: Given a user query Q
U
 D, Q

A
, Q

P
, Q

R

and Q
C
 D, S

A
, S

P
, S

R
, S

SA
, C D

U
 and D

C

will be the retrieved rows in the execution of Q
U
 and Q

C
,

respectively.

: Given a user query Q
U
 and cached query

Q
C

, probe query (pq) will be Q
U C

 and dataset against

pq will be D
U

D
C

.

: Given a user query Q
U
 and cached query

Q
C

, remainder query (rq) will be Q
U

- Q
C
 and dataset

against rq will be (D
U

-

D

C
).

: Given a user predicate Q
P
 and cached

predicate S
P
, predicate implication (Q

P P
) holds if and

only if (Q
P

 S
P
) - Q

P

: Given a user predicate Q
P
 and cached

predicate S
P
, holds if and only if

Q
P

 S
P
 ! = .

Indexing for semantic cache to reduce complexity 15

Journal of the National Science Foundation of Sri Lanka 45(1) March 2017

: Given a user predicate Q
P
 and cached

predicate S
P
, holds if and only

if Q
P

– S
P
 = Q

P
.

: Given a user query Q
U
 and cached query

Q
C

, query implications (Q
U C

) holds if and only if

Q
A

S
A
 and Q

P P
.

: Given a user query Q
U
 and cached query

Q
C

, holds if and only if Q
A

S
A

and Q
P

 S
P
 ! = .

: Given a user query Q
U
 and cached query

Q
C

, holds either Q
P

S
A

 or

Q
P

 S
P
 = .

: Given a user query Q
U
 and cached query

Q
C

, common attributes (C
A
) is a set of attributes which

are common among user and cached queries and will be

computed as C
A
= Q

A A
.

: Given a user query Q
U
 and cached query

Q
C

; difference attributes (D
A
) is the set of attributes,

which exists in user query but not in cached query and

will be computed as D
A
= Q

A
- S

A
.

 Semantic caching has been extensively studied by

researchers in both relational and XML databases (Lee &

Chu, 1999; Luo et al., 2000; Chen et al., 2002; Sumalatha

et al., 2007b; 2007c; Sanaullah et al., 2008). An effort

has been made to build a semantic caching system on the

basis of description logic (Tariq et al., 2010) but failed to

answer the overlapped queries locally. The related work

is discussed on the basis of semantic indexing and query

(SELECT and PROJECT) trimming in relational data

semantic cache.

techniques were proposed by Dar et al

structure based query trimming process proved to be

expensive (Roussopouls, 1991; Ahmad et al., 2009) in

terms of runtime complexity due to no indexing strategy.

number of queries stored in it are a few tens. To overcome

this limitation the cache was organised into chunks

(Deshpande et al., 1998; Ren et al., 2003) and segments

Rockey, 2010). Query trimming process improved up to

some extent due to indexing the semantics in the form of

segments (Ahmad et al., 2008a; 2009). In the presence of

segments, query matching (basic step of query trimming)

still has high runtime complexity (Ahmad et al., 2009)

due to the large number of possible segments (there can

2n – 1

attributes). Segment based indexing scheme is used in

1997; Ren et al., 2003; Cai et al., 2005; Jonsson et al.,

et al

& Rockey, 2010). All of these have higher runtime

complexity due to the large number of possible segments.

Makki and Rockey (2010) proposed the concept of query

visualisation to optimise the query trimming process

(Makki & Andrei, 2009; Makki & Rockey, 2010). They

claimed and discussed some scenarios to prove that

previous schemes were unable to trim the query in an

optimal time. They improved the runtime complexity

with the help of query visualisation concept. Still, this

scheme was expensive because its query matching

process depended on the segment based indexing

query trimming process that enhances semantic caching

et al., 2000).

This scheme was also expensive due to its dependency

on segment based indexing scheme. A 3-level indexing

scheme (Sumalatha et al., 2007a; b) was proposed to

overcome the limitation of the segment based scheme.

It improved the query matching process but query

trimming was not clear in that scheme. Bashir and Qadir

query matching. Although 4-HiSIS is a better approach

4-HiSIS that covers the query trimming process. A

scheme based on content matching was presented by

Bashir et al

4-HiSIS to split the query into probe and remainder

queries (Bashir & Qadir, 2007). This work only coverd

simple predicates and failed to split complex (having

conjunct operators) queries. 4-HiSIS was merged with

Still this scheme was not appropriate to trim the query

because it was designed for single relation and was only

applicable for single predicate. To improve this, semantic

matching process has been enhanced by presenting the

graph based semantic indexing scheme (Ahmad et al.,

2010). This enhanced scheme achieved the required

improve hit ratio, because the graph based scheme was

SELECT *

If a user pose a new query as given below;

SELECT * FROM Books WHERE

16 Munir Ahmad et al.

March 2017 Journal of the National Science Foundation of Sri Lanka 45(1)

None of the previous schemes in literature was able

to match the semantic of this query with the stored

semantics. From the above we conclude that there is a

the required hit ratio and perform semantic matching

semantic indexing that is able to achieve both goals.

METHODOLOGY

query matching. Therefore, to make the query processing

strategies used for query matching, graph based semantic

indexing (Ahmad et al., 2010) scheme is the most

or not the required attributes are available at cache. After

behaves like a segment based scheme for building

probe and remainder queries, which is costly and time

consuming.

 Schema is required to be stored in semantic cache to

process a query (Ahmad et al., 2008b; 2009). Therefore,

we have merged the query’s semantics with schema.

The main advantage of this amalgamation is preserving

However, in previous studies (Ahmad et al., 2008b; 2009)

semantics and schema were stored separately in cache,

which demands extra memory. In this scheme semantics

are associated with stored schema (semantic enabled

schema). This is called a schema based hierarchical

indexing scheme for semantic cache. Initially, the schema

for each database is stored in cache with database names,

relation names and attribute names with false status in

the form of a tree as given in Table 1. Due to keeping

the schema of database its space complexity will be

An example of library database is given in Table 2.

DB name Table name Fields Status Condition Content

 A
1
 False Null Null

 R
1
 A

2
 False Null Null

DB A
3
 False Null Null

 R
2
 A

1
 False Null Null

 A
2
 False Null Null

 Schema based hierarchical semantic indexing

DB name Table name Fields Status Condition Content

 Books Author False Null Null

 Title False Null Null

Library ISBN False Null Null

 Journals Author False Null Null

 Title False Null Null

 Schema based hierarchical semantic indexing for library

Now suppose that a user enters a query as given below:

SELECT Author, Title FROM Books WHERE

After execution of the above query the retrieved contents

will be stored (assume the contents will be stored with

name 1; just like materialised view) and the semantics

will be updated as given in Table 3.

DB Name Table name Fields Status Condition Content

 Books Author True Author = “Ali” 1

 Title True Author = “Ali” 1

Library ISBN False Null Null

 Journals Author False Null Null

 Title False Null Null

Author and Title across books are posed to retrieve in the

query so their status will be changed to true. Condition

and content reference will also be updated accordingly.

After managing semantics, the next step is to use the

database names will be matched exactly; secondly if

database name is matched then the relation names will

be matched; otherwise processing will be stopped. After

Indexing for semantic cache to reduce complexity 17

Journal of the National Science Foundation of Sri Lanka 45(1) March 2017

matching is given in Figure 1.

 Due to the schema based hierarchical semantic

indexing scheme we are able to perform query matching

in linear fashion and to handle the SELECT * type

queries.

 There is a simple driver algorithm (sMatch) to

perform the query matching as given in Figure 2.

exactly matching the relation name, attribute names

are matched. When it is found that attributes are part

of the schema, then their status is checked. In case of

true status of attributes, data across particular attributes

will be available; otherwise it will be retrieved from the

server. If status of the attribute is also true then condition

across a particular row is matched. Finally probe query

is generated with the generated condition from the

referenced content. Hierarchical schema based semantic

MATHEMATICAL PROOF AND RESULTS

A comparison of the proposed sMatch with previous

studies by Ren et al. (2003) and Ahmad et al. (2010) was

done. The comparison is given in different aspects; run

time complexity, hit ratio, and handling of incorrect and

SELECT *

of the proposed semantic indexing scheme with the

segment based semantic indexing scheme. We calculated

the complexity of both as follows.

Theorem1: For a relation R having attribute set A = Ai ,

where ; query matching complexity for segment

m × n × 2n-1 m’ is the number

n’ is the number

of total attributes in a relation.

Proof: (Constructive)

Segment based query matching scheme depends on the

number of segments and the number of attributes in each

segment. The number of segments in cache depends

on the number of attributes in a relation. Possible

n’ attributes are proved

in lemma 1.1.

: For a relation R having attribute set A = Ai,

where , the maximum number of segments is

2n-1.

Proof: Number of attributes in a relation R = n

Number of subsets, P, for n attributes can be computed

as follows;

|P(n)| = 2n ...(1)

Number of disjoint queries (D
Qu

) on relation will be equal

to the subsets except the empty set.

|D
Qu

|= P(n)-

There will be only one empty subset in P(n). By replacing

values in equation 2 from equation 1 we get;

|D
Qu

 | = 2n - 1 ...(3)

As we know (Ren et al., 2003) that the number of

segments |S| on cache will be equal to the number of

disjoint queries. i.e.

|S| =| D
Qu

| ...(4)

By replacing the value into equation 4 from equation 1,

we get;

|S|= 2n – 1

Hence lemma 1.1 proved.

number of segments |S| in worst case are 2n – 1 as proved

in lemma 1.2.

 Working algorithm sMatch

18 Munir Ahmad et al.

March 2017 Journal of the National Science Foundation of Sri Lanka 45(1)

: For a relation R having attribute set A = Ai,

where , n x 2 n-1 number of comparisons (NoC
n
)

 Ai over a number of

segments |S|.

Proof: Finding a single attribute Ai over a number of

segments |S| required to visit each and every attribute in

each segment.

 For a single attribute in a relation, there can be only

one segment (according to lemma 1.1) and the number

of comparisons (NoC
n
) required for query matching will

also be one, which can be computed as follows:

NoC
n
 = 21-1

 For two attributes, there will be three segments

(according to lemma 1.1). The number of comparisons

(NoC
n
) required for query matching in this case will be

four and can be computed as,

NoC
n
 = 22 - 1 + (21 - 1)

 = 22 - 1 + 20(21-1)

 = 22 - 1 + 20(22-1- 1)

 For three attributes, there will be three segments and

the number of comparisons (NoC
n
) required for query

matching is 12 and can be computed as follows:

NoC
n
 = 23 - 1 + 22 - 1 + 21 - 1+21 - 1

 = 23 - 1 +22 - 1 + 2(21 - 1)

 = 23 - 1 + 20(22 - 1) +21(21 - 1)

 = 23 - 1 + 20(23-1-0 - 1) + 21(23-1-1 - 1)

 For four attributes, there will be three segments and

the numbers of comparisons (NoC
n
) required for query

matching is 32 and can be computed as follows:

NoC
n
 = 24 - 1 + 23 - 1 +22 - 1 +21 - 1+21 - 1+22 - 1 +21 - 1

+21 - 1

 = 24 - 1 + 23 - 1 +22 - 1 +22 - 1 +21 - 1 +21 - 1+21 -

1+21 - 1

 = 24 - 1 + 23 - 1 +2(22 - 1) +4(21 - 1)

 = 24 - 1 + 20(23 - 1) +21(22 - 1) +22(21 - 1)

 = 24 - 1 + 20(24-1-0 - 1) +21(24-1-1 - 1) +22(24-2-1 - 1)

can be computed as follows:

NoC
n
 = 25 - 1 + 20(24 - 1) + 21(23 - 1 +22(22 - 1) +23(21 - 1)

 = 25 - 1 + 20(25-0-1 - 1) + 21(25-1-1 - 1 + 22(25-2-1 - 1)

 +23(25-3-1 - 1)

n’ attributes the number of comparisons (NoC
n
) can

be computed as follows:

NoC
n
 = 2n - 1 + 20(2n-0-1 - 1) + 21(2n-1-1 - 1 + 22(2n-2-1 - 1)

+…… + 2n-3(2n-n-3-1 - 1) + 2n-2(2n-n-2-1 - 1)

We can write it as

NoC
n
= 2n – 1 +

= 2n-1 +

= 2n-1 +

= 2n-1 + ...(1)

By using geometric series we know that

 2n+1 - 1

So, equation 1 becomes

NoC
n
 = 2n – 1 +

 = 2n - 1 + + 1

 =

Hence lemma 1.2 proved.

 In lemma 1.2 we have proved that the query matching

|S| is

.

m.n.2n-1

m’ attributes over relation R having

n’ attributes. The above calculated comparisons are

derived from the stored segments in cache. Now, if there

m’ attributes required in user query then the total

m x n x 2n-1

m x n x 2n-1

m n’

is the number of attributes in a relation.

Hence theorem 1 proved.

: In best case the query matching complexity

m.n.2n-1

of segment. According to lemma 1.1 the total numbers

of segments (|S|) will be 2n-1. m’ we

Indexing for semantic cache to reduce complexity 19

Journal of the National Science Foundation of Sri Lanka 45(1) March 2017

have to visit 2n-1 segments. In this case query matching

m.n.2n-1

: For a relation R having attribute set A = UAi,

where , query matching complexity for schema

m x n m’ is the number of

n’ is the number of

total attributes in a relation.

Proof: This proof is very straightforward, because it

indexes the semantic enabled schema instead of semantic

n’

irrespective of the number of disjoint queries. So in worst

case NoCn m x n m’ attributes

over R.

 Hence, the worst case complexity of the segment based

scheme is exponential while the worst case complexity

of the schema based scheme will be polynomial, which

can be plotted as given in Figure 3.

Similarly, best case complexity analysis of the schema

based and segment based scheme is given in Figure 4. We

assumed that each comparison will take one millisecond

to compute.

 Best case complexity analysis

N
o
.

o
f

c
o
m

p
a
ri
s
o
n
s

No. of attributes in relation

 6-HiSIS based

 Segment based

 Graph based

 Hit ratio comparison by increasing Select * queries

H
it
 r

a
ti
o
 i
n
 P

e
rc

e
n
ta

g
e

Percentage of Select * type queries

 6-HiSIS based

 Segment based

 Graph based

 Worst case complexity analysis

N
o
.

o
f

c
o
m

p
a
ri
s
o
n
s

 6-HiSIS based

 Segment based

 Graph based

No. of attributes in relation

 Time comparison on the base of incorrect queries

N
o
.

o
f

c
o
m

p
a
ri
s
o
n
s

No. of incorrect queries

 6-HiSIS based

 Segment based

 Graph based

 Space complexity analysis

 6-HiSIS based

 Segment based

 Graph based

20 Munir Ahmad et al.

March 2017 Journal of the National Science Foundation of Sri Lanka 45(1)

In Figure 5, the comparison between segment based

(Ren et al., 2003), graph based (Ahmad et al., 2010) and

In this comparison we are assuming that all of the data

queries), which indicates that the user needs all of the

attributes. As soon as we increase this type of queries,

the hit ratio for graph based and segment based will be

(segment and graph based) techniques are unable to

type of queries by using schema. Therefore, the hit ratio

(Ren et al., 2003), graph based (Ahmad et al., 2010) and

user is going to pose incorrect queries. As soon as we

increase the number of incorrect queries, the computing

time for graph based and segment based schemes will be

techniques are unable to reject incorrect queries. In

level. Due to this, the proposed techniques perform

better.

 In Figure 7, space complexity for segment based

(Ren et al., 2003), graph based (Ahmad et al., 2010) and

earlier, space complexity will be higher than the previous

n n’ distinct

queries have been processed and their semantics are

cached in semantic cache.

CONCLUSION

of the caching system. One of the major activities of query

runtime complexity from exponential to polynomial.

REFERENCES

1. Ahmad M., Asghar S., Qadir M.A. & Ali T. (2010).

Graph based query trimming algorithm for relational

data semantic cache. MEDES’10 - Proceedings of the

International Conference on Management of Emergent

Digital Ecosystems, Bangkok, Thailand, pp. 47 – 52.

2. Ahmad M. & Qadir M.A. (2009). Query processing and

enhanced semantic indexing for relational data semantic

cache. MSc thesis

Islamabad, Pakistan.

3.

M.T. (2012). Semantic cache system. Semantics in Action

– Applications and Scenarios

4. INTECH Open Access Publisher, Rijeka, Croatia -

 DOI:

4. Ahmad M., Qadir M.A. & Sanaullah M. (2008a). Query

processing over relational databases with semantic cache: a

survey. IEEE International Multitopic Conference, INMIC

2008

 DOI: https://doi.org/10.1109/INMIC.2008.4777801

5.

Intelligent Systems and Agents, ISA 2008, indexed by IADIS

digital library (www.iadis.net/dl). Held within IADIS Multi

Conference on Computer Science and Information Systems

(MCCSIS 2008

27.

Ahmad M., Qadir M.A. & Sanaullah M. (2009). An

semantic cache. 2nd IEEE Conference on Computer, Control

and Communication, IC409,

7.

Intelligent cache management for data grid. Proceedings

of the Australasian Workshop on Grid Computing and

E-Research

8.

Pirahesh H. & Reinwald B. (2003). Cache tables: paving

the way for an adaptive database cache. Proceedings of the

29th International Conference on Very Large Databases,

 DOI:

9.

matching over semantic cache. IEEE International

Multitopic Conference, INMIC 2006

 DOI:

10. Bashir M.F. & Qadir M.A. (2007). ProQ-Query

Processing Over Semantic Cache for Data Grid. Centre

for Distributed and Semantic Computing, Mohammad Ali

Indexing for semantic cache to reduce complexity 21

Journal of the National Science Foundation of Sri Lanka 45(1) March 2017

11. Bashir M.F., Zaheer R.A., Shams Z.M. & Qadir M.A.

content matching over data grid. Advances in Web

Intelligence,

Germany.

 DOI:

12. Cai J., Jia Y., Yang S. & Zou P. (2005). A Method of

Aggregate Query Matching in Semantic Cache for

Massive Database Applications

Heidelberg, Berlin, Germany.

 DOI:

13. Chakrabarti K., Porkaew K. & Mehrotra S. (2000).

Proceedings of the 16th IEEE International Conference on

Data Engineering,

 DOI: https://doi.org/10.1109/icde.2000.839410

14. Chen C.M. & Roussopoulos N. (1994). The implementation

integrating query result caching and matching. Proceedings

of the International Conference on Extending Database

Technology,

 DOI:

15. Chen L., Rundesteiner E.A. & Wang S. (2002). XCache a

semantic caching system for XML queries. Proceedings

of the 2002 ACM SIGMOD International Conference

on Management of Data,

DOI:

LDAP directory caches, Proceedings of the 18th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems,

 DOI:

17.

data caching and replacement. Proceedings of the 22nd

International Conference on Very Large Databases, San

18. Deshpande P.M., Ramasamy K. & Shukla A. (1998).

Caching multidimensional queries using chunks.

Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data, Seattle, Washington

 DOI:

19.

for heterogeneous databases. Proceedings of the 4th

KRDB Workshop on Intelligent Access to Heterogeneous

Information

20.

and implication problems in database systems. ACM

Transactions on Database Systems 21(2): 270 – 293.

 DOI:

21. Jonsson B.T., Arinbjarnar M., Thorsson B., Franklin

of semantic cache management. ACM Transactions on

Internet Technology 6(2): 302 – 331.

 DOI: https://doi.org/10.1145/1151087.1151091

22. Kang S.W., Kim J., Im S., Jung H. & Hwang C.S.

7th International Conference on Web-Age Information

Management Workshops,

June, pp. 7.

 DOI:

23.

scheme for client-server database architectures. The

International Journal on Very Large Databases 5(1):

35 – 47.

 DOI: https://doi.org/10.1007/s007780050014

24. Lee D. & Chu W.W. (1999). Semantic caching via

query matching for web sources, Proceedings of the 8th

International Conference on Information and Knowledge

Management

77 – 85.

 DOI:

25. Luo Q., Naughton J.F., Krishnamurthy R., Cao P. & Li Y.

(2000). Active query caching for database web servers. 3rd

International Workshop WebDB200 on The World Wide

Web and Databases

104.

in ubiquitous environment. Proceedings of the 2009

International Conference on Wireless Communications and

Mobile Computing,

1213 – 1217.

 DOI:

27.

caching in ubiquitous environment. IEEE 24th International

Conference on Advanced Information Networking and

Applications Workshops.

28. Ren Q., Dunham M.H. & Kumar V. (2003). Semantic

caching and query processing. IEEE Transactions on

Knowledge and Data Engineering 15(1): 192 – 210.

 DOI:

29. Roussopoulos N. (1991). An incremental access method for

view cache: concept, algorithms, and cost analysis. ACM

Transactions on Database Systems 16

 DOI: https://doi.org/10.1145/111197.111215

30. Sanaullah M., Qadir M.A. & Ahmad M. (2008). SCAD-

XPath with cases and rules. IEEE International Multitopic

Conference, INMIC 2008

 DOI:

31. Sumalatha M.R., Vaidehi V., Kannen A., Rajasekar M. &

Karthigaiselven M. (2007a). Hash mapping strategy for

improving retrieval effectiveness in semantic cache system.

IEEE International Conference on Signal Processing,

Communications and Networking

 DOI: https://doi.org/10.1109/icscn.2007.350737

32. Sumalatha M.R., Vaidehi V., Kannen A., Rajasekar M. &

Karthigaiselven M. (2007b) Dynamic rule set mapping

strategy for the design of effective semantic cache. IEEE

9th International Conference on Advanced Communications

Technology

 DOI: https://doi.org/10.1109/icact.2007.358753

33. Sumalatha M.R., Vaidehi V., Kannen A., Rajasekar M.

& Karthigaiselven M. (2007c). Xml query processing –

semantic cache system. International Journal of Computer

Science and Network Security 7

22 Munir Ahmad et al.

March 2017 Journal of the National Science Foundation of Sri Lanka 45(1)

34. Sun X., Kamel N.N. & Ni L.M. (1989). Processing

implication on queries. IEEE Transactions on Software

Engineering 15

 DOI:

35. Tariq M., Qadir M.A. & Ahmad M. (2010). Description

logic for semantic cache query processing. International

Conference on Information and Emerging Technologies, 14

