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Abstract : In the paper entitled “The Diophantine Equation Y (Y + 1)(Y + 2)
(Y +3)=3X(X+1)Y(X+2)(X +3)”, published in the May 1975 issue of the
Journal of the London Mathematical Society, it was shown that all the non-trivial
solutions of theequationY (Y +1)(Y +2)(Y +3) =3X(X+1) (X+2)
( X + 3) are given by the following table : :

X 2 2 5 5 —5 —5 —8 —8
Y 3 —6 7 —10 3 —6 . 7 —10

It is obvious that m times the above solution are solutions of the equation
Y(Y +m)(Y+2m) (Y +3m) =3X(X+m) X+ 2m) (X + 3m).” The
object of this paper 1s to provide conditions of a simple type on m under wh1ch the
latter equation has no other non-trivial solution when m is a positive integer.

1. Introduction
It has been shown? that all thee non—tri'vial solutions of the equation
Y(Y+ D(Y+2)(Y+3)=3X(X+1)(X+2)(X+3 (@)
are given by the following table:
X 2 2 5 5 —5 —5 —8 —38
Y 3 —6 7 —10 3 —6 7 —10
It is obvious that m times the above solutions are solutions of the. equation
Y(Y+m)(Y+2m)(Y+3m)=3X(X+m)(X+2m)(X+3m) (2

The object of this paper is to provide conditions of a simple type under which ‘the
equation (2) has no other non-trivial solution when m is a positive integer:

2. The Equations .
Substitutihgx =2X +3m, y=2Y -+ 3m in (2), we get

(22—4_5’”2)2 —3 (’i}%)z = — o,
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y 2 2 ___ 2 )
Now, putting V = 14—5’” and U = # we obtain the following
equations :

V2 3U% = —2m*, 3

Sm2 - AV = 2, ' ' “
and : .

Sm2 4+ 4U = x2, - Q)

Hence, the equation (2) is equivalent to the equations (3), (4) and (5). It can be
easily shown thatif (X, ¥,m) = 1, then (U, V) = 1 and conversely.

V\{e‘ shall call a solution X, Y of the equation (2) primitive if ( X, ¥, m) = 1.
We require the following lemmés :
Lemma 1. The equation (2) has no primitive solution if m is even.
Proof : Suppose that m is even and that the equation has a primitive solution.

Then (3) gives V2 — 3U2=0 (mod 8). Now, since (U, V') = 1, it follows from (3)
that both U and ¥V are odd.

Hence, U? =1 (mod 8) and V2= 1 (mod 8), from which we have V2—31"?= —2
(mod 8); a contradiction.

The lemma now follows.

Lemma 2. The equation (2) has no primitive solution if m has any prime factor
p=3,5, 7 (mod 12).

Proof. Suppose that the equation (2) has a primitive solutioﬁ.
Then (U, V) ="1.
(i) Let p= 3.
Then by (3), 3/V2 and therefore 3/U. Hence (U, ¥)> 1; a contradiction.
(i) Let p=35, 7 (mod 12).
Then the Jacobi-Legendre symbol (3/p) = — 1. Now since (U, V)= 1, from

(3) it follows that p# Vand p # U. Again from (3), we obtain V2 = 3U? (mod p),
which “implies that (3 /p )= 1; a contradiction.

The lemma now follows.

Lemma 3. The equation (2) has no primitive solution if m has any prime factor
p =1 (mod 12) such that

3(p1)/+=—1(mod p).
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Proof. Suppose the equation (2) has a primitive solution. Then (U, V) =1
Now from (3), we have. ‘ S

Vi= 302 (modp) " , . . (6

From (4) and (5), V and U are quadratrc resrdues of p and therefore by Euler ]
Criterion,

V(p-1)[2=U(~1)]2=1 (mod p) R
Since (U, V') = 1, from (3) it follows that p £~ U and p #~ V. By (6), we have
V(»=1)/2=3(»~1)/%U(?~1)/2 (mod p)

and using (7), we have 3(P 1)/ =1 (mod p) ; a contradiction. The lemma
now follows.

Lemma 4. Every solution of (2), which is not a primitive solution, is a multlple ofa
primitive solutton with a smaller m and conversely. .

Proof. Suppose that X, Y, m satisfy (2) and that ( X, Y, m) =k> 1 .Dividing
both sides of (2) by k4, we have

Y(Y m Y m\ (Y m Xix m\(x  m\/x m\ -
Sl = 221 =432 ) = = = 242714 i
k(.ﬁk)(.ﬁ 7) 5+ ?) 3k(k+k)(k12k)(k+3k) |
and the lemma follows. g

Corollary. If m is a prime, the non-primitive solutions of (2) are the solutions of the.
equations (1) multiplied by m. Now from lemmas (2), . (3) and (4) we have the
following theorem. o

Theorem. The equation (2) has only the eight pairs of non-trivial solutlons given by
the followmg table : :

X o2m  2m 5m Sm —5m  —5m —8m —8m

Y 3m —6m Tm  —I10m 3m —6m Tm  —10m -

s t : wf
when m is an integer of the form 213 pT i-q‘j, where I, r, s;, f; are non-

negative integers and p; ’s are posmve primes = 5 7 (mod 12) and g;'s are posrtlve
primes = 1 (mod 12) such that 3 (¢g;-1 )/4 =—1 (mod q]) . ‘

‘3. stcussron

Our theorem shows that for m < 47, no primitive solution exists except possrbly for
m =11, 13 'and 23.. Now we" shall discuss these three cases.: When m = 11, the
equation (2) has a primitive solution X' = — 12, Y= —15 and when m =, 13 it
has a primitive solution X' = — 11, Y= —4. Whenm = 23 the equatlon has no
primitive solution, which ecan: be proved as follows :
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The equation (3), in this case reads as V2 — 3U2 = — 2.23¢ whose complete solution

(2) is given by :

Vot U, 3= + (1154 437,/3) (2 4+ /3 ), _ 8)
VL U3 = (— 115 £ 43703) (24 3N, ' )
Vi Upf3 = & (269 4 459./3) (24 370, o
and | | o
Vn+bnv3=i(f259+459x/3)(2+«/3)“~ )

where n is zero or an integer.

(i) Considering V,, U, satisfying (8) or (9), we easﬂy see that (¥, U,) — 23
and therefore (8) and (9) will not lead to primitive solutions of the equation ).

(i) Considering V,, U, given by :
Vo + Unaf3 = (269 + 4594/3) (2 +4/3 )7,

we ‘easily see that the residues of U, modulo 23 are periodic with respect to n, the
length of a period being 11 and the residues of a period being 22, 14, 11, 7, 17, 15,
20, 19, 10, 21, 5. Since all these residues are quadratlc non- -residues modulo 23,
(5) is impossible.

(i) ~ Considering V,, U, given by
V, + UM/S = — (269 + 459\/3)(24—\/3)n

we see that the res1dues of V, modulo 23 are perlodlc with respect to n, the length ofa
period being 11 and the residues of a period being 7, 17, 15, 20, 19, 10, 21, 5
22, 14, 11. Since all these residues are quadratic non-residues modulo 23, (4) is
impossible.

(iv) Considering V,, U, given by
Vo U3 = (— 269 + 4593 ) (2 + /3 )m,

we see that the residues of U, modulo 23 aré periodic with respect to n, the length of a

period being 11 and the residues of a period being 22, 5, 21, 10, 19, 20, 15, 17, 7, 11,
14. Since all these res1dues are quadratic non-residues modulo 23, (5) is impossible.

(v) From (4) and (5) it is clear that both V and U must be greater than — 662.
lf Vn, U ,satisfy ,

Vo U3 _‘—(—269+459\/3)(2+\/3)n
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we easily see that either V, or U, is less than — 662 for all values of »n except n = 0,
and therefore (4) or (5) is impossible when n % 0. When n =0, U, = — 459 and
therefore (5) is impossible in this case.

Thus when m = 23, the equation (2) has no primitive solution.
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